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Outline

• Fundamental	abstractions	for	distributed	algorithms

• Modeling	dynamic	systems

• Fault	tolerant	algorithms	in	dynamics	systems	:	some	results	
and	open	issues
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Agreement	problems

• Fondamental	abstraction	to	build reliable services	

agreement	on	order	of	operations
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Agreement	problems:	consensus

Initially 1 value proposed by each process

Eventually
Every correct process decided 
the same proposed value
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Validity: Any value decided is a value proposed 

Agreement: No two correct processes decide 
differently 

Termination: Every correct process eventually 
decides
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Other	agreement	problems
all	correct	processes	try	to	agree	on	some	set	of	
proposed	values

• k-set	agreement	
• Agreement:	At	most	k	values	are	decided.
• Validity:	Every	value	decided	must	have	been	proposed.
• Termination:	Eventually,	every	correct	process		decides.

Generalization	of	consensus	(k=1)

• set	agreement:	k=n-1
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Traditional	assumptions

• Connectivity
– Õ =	{p1,p2,	..,	pn}	known	processes
– n	processes	strongly	connected	(no	partition)

• Time
– Synchronous links	(known bound	on	transmission	
delays)

– Asynchronous links	(no	bound)

• Failures
– Crash,	recovery,	Byzantine
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A	fundamental	result
• “Impossibility	to	solve	deterministically	the	
consensus in	a	asynchronous	networks	with	only 1	
crash	failure”	[Fischer-Lynch-Paterson	85]

• The	idea:	impossible	to	distinguish	faulty	hosts	from	
slow	ones
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Circumvent	FLP	impossibility
4	approaches:

– Probabilistic	(probabilistic	consensus,	e.g.,	Ben-Or)
• Possibly	no	termination	

– k-agreement	
• A	relaxed	consensus	(may	output	k	different	values)

– Partial	synchrony
• Add	assumptions	on	the	network
• Eg,	There	is	an	unknown	bound	on	the	transmission	delay	

– Unreliable	failure	detectors	
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Unreliable	failure	detectors	

• Introduced	in	the	beginning	of	90’s	by	
Chandra	and	Toueg

• Failure	detector	=	an	oracle	per	node
• Oracles	provide	lists	of	hosts	

suspected to	have	crashed
=>	possibly	false	detections
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System	model

• n processes	π={p1,	.	.	.	,pn}
• Processes	communicate	by	message	passing
• Fully	connected	asynchronous	network
• Reliable	channels
• Processes	may	crash (processes	that	do	not	
crash	are	called	correct)

• The	system	is	enhanced	with	failure	detectors
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Properties	of	FD

Accuracy
Strong Weak Eventually strong Eventually Weak

Strong completeness Perfect
P

Strong
S ◊ P ◊S

• Strong	Completeness:	
– Eventually	every	process	that	crashes	is	permanently	suspected	by	every

correct	process
• Accuracy:	

– [Eventual]	Strong:	[There	is	a	time	after	which]	correct	processes	are	not	
suspected	by	any	correct	processes

– [Eventual]	Weak:		[There	is	a	time	after	which]	some correct	processes	are	
not	suspected	by	any	correct	proc
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Variantes	:	Eventual	leader

Ω	:	Output	only	one	trusted	process,	the	
eventual	leader

The	leader	is	eventually	the	same	correct	
process	for	every	correct	process
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Weakest	failure	detectors	

• Introduced	by	Chandra,	Hadzilacos and	Toueg
• A	weakest	failure	detector	D	for	a	problem	P	has	
to	be	:
– Sufficient:	with	D	it	is	possible	to	solve	P
– Necessary:	every	other	sufficient	FD	D’	is	stronger	
than	D	(D’	can	emulate	D)	

Ω	and	◊S	are	the	weakest	FD	to	solve	consensus	
with	a	majority	of	correct	processes	(eg.	Paxos)

=>	Ω	and	◊S	are	equivalent
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Consensus	on	weakest	FD

• Paxos
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Some	weakest	FD	results

Consensus k-set
agreement

set	
agreement

Eventual	
consistency

Shared
memory

Ω
[LH94]

k-anti-Ω
[GK09]

anti-Ω
[Z10]

Message	
passing

(Ω,Σ)
[DFG10] ? L

[DFGT08]

Ω
[DKGPS15]

Problems

Models
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Implementation	:	Fault-tolerant	
Architecture
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Implementation	of	FDs
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Additional	assumptions

• Assumptions	on	transmission	delay	∆	and	relative	
process	speed	δ	

• Partial	synchrony	[DLS88] timer	approach
1. Either	∆	(δ)	is	known	but	holds	only	eventually,	or	
2. ∆	(δ	)	exists	but	is	not	known.

• Relative	speed	[MMR03]	 timer-free	approach
– Constraints	on	the	message	pattern	(message	delivery	
order)

– e.g.,	some	processes	always	response	among	the	first	
ones
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Limits	of	current	implementations

• Many	implementations	of	FD	target	static systems
– Membership		and	topology	are	known

• Scalability	
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Distributed	systems	are	more	and	
more	dynamic

• In	2021,	mobile	devices	will	account	for	a	half	of	
global	internet	traffic
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Edge	computing	and	IoT	emerging	
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New	distributed	architectures
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Clouds
Datacenters	
(DC)

Gateways
Fog

PC,	Smart	IoT	
devices,	Sensors,	Tags

Highly dynamic networks

Egde and local datacenters

Remote datacenters



Features	of	large	and	dynamic	distributed	
systems

• Asynchronous network
– No	bound	on	transmission	delays	

• Huge number	of	resources	
– >1M	nodes

• Dynamicity
– Churn:	Permanent	arrival	and	leave	of	nodes
– Mobility:	Devices,	virtual	machines	…	can	move	or	migrate
– High	failure	rate,	failure	=	common	event

• “Chaotic”	systems	with	no	global	state
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Models	for	dynamic	systems

• Toward more	dynamics :	Infinite arrival
models
– Processes	can	be	up	or	down
– The	number	of	up	processes	in	any	interval	of	
time	is	upperly bounded	by	a	known	constant	C

• Dynamic networks	:	dynamic graphs
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G0 G1 G2 G3

G = G0,G1,G2,G3,…Gi,…,  i ∈ ℕ

[B. Bui-Xuan, A. Ferreira, A. Jarry, JFCS 2003]

[A. Casteigts, P. Flocchini, W. 
Quattrociocchi, N. Santoro, 2012]

[0,1)

Graph	Representation
• Sequence Based

• Time	varying graphs	(TVG)

G	=	(V,	E),	lifetime	𝒯
‣ Presence	function	𝜚 :	E	× 𝒯→	{0,1}

‣ +	other	functions	(latency,	node	presence,	…)
© A. Casteigts 25



TVG:	Basic	Properties

• Temporal	path	(a.k.a Journey),	e.g.,	a	↝ e
a	↝ *,		b	↝ *,		c	↝ *,	d	↝ *,	except	e!

• 1	↝ *		 ∃u	∈ V,	∀v	∈ V,	u	↝ v

• *	↝ 1 ∀u	∈ V,	∃v	∈ V,	u	↝ v

• *	↝ * ∀u,	v	∈ V,	u	↝ v

[0,1)
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TVG:	Classes
• u	↝ v			- Periodic	journey
• u	↝ v			- Bounded	journey
• u	↝ v			- Recurrent	journey

P

B

R

© CasteigtsWhat assumption for what problems ?

Edge/Path recurrence no recurrence
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Eventual	Leader	Election
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Eventual	leader	election	
(Ω : omega	failure	detector)

• The	Ω failure	detector	satisfies	(“eventual	leader	election”):

– there	is	a	time	after	which	every	correct	process	always	trusts	the	same	
correct	process

p1

p3

p4 p5

p2

Ω=p2

Ω=p2

Ω=p2

correct

crashed
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• Dynamic	self-organized	systems
– Multi-hop	networks		(e.g.	wireless	ad-hoc	networks)				

• broadcast	/receive	messages	to/from	neighbors	within	transmission	
range

• Communication	
– Channels	are	fair-lossy
– there	is	no	message	duplication,	modification	or	creation

• The	system	is	asynchronous
– There	are	no	assumptions	on	the	relative	speed	of	processes	nor	on	

message	transfer	delays.
• Failure	model	:	crashes
• The	membership	is	unknown	

– A	node	is	not	aware	about		the	set	of	nodes	nor	the	number	of	them.
• Nodes	have	partial	view	of	the	network

Context
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Dynamics	of	the	network
• Dynamic	changing	topology

– join/leave	of	nodes,	
– mobility	of	nodes,	failure	of	nodes	(crash)
– Finite	arrival	model

• The	network	is	dynamically	composed	of	infinite	mobile	nodes,	but	
each	run	consist	of	a	finite	set	of	n	nodes.	
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Processes	status	and	network	connectivity

• Two	sets	of	nodes:
– STABLE	(correct):	nodes	eventually	and	

permanently	correct	
– FAULTY:	nodes	which	crash	

• Network	connectivity	
– Eventually,	the	TVG	is	connected	over	the	time

• There	exists	a	journey	between	all	stable	nodes	at	
any	time

• Network	recurrent	connectivity		(class *↝ * )		

Transmission	
range

mobile	
node

Stable	
node
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An	Eventual	Leader	Election	Algorithm

• Principle
– Election	of	a	leader	process	based	on	punishment

• Round	counter	to	control	the	freshness	of	the	information
– Periodic	local	query-response	exchange

• Wait	for	a responses
– If	q is locally	known	by	p,	has	not	moved,	and	does	not	respond	
to	a	query	of	p among	ap first	responses,	q is	punished	by	p.	

q	not	punished

q	punished

q	not	punishedWaiting	for	ap responses

…N
ei
gh
bo

rh
oo

d	

ap

p

r

q
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Implementation	of	W on	dynamic	networks

• Each	node	maintains	3	sets:
– local_known:	the	current	knowledge	about	its	neighborhood

– global_known:	the	current	knowledge	about	the	membership	of	the	
system

– punish:	a	set	of	tuples	<punish	counter,	node	id>

leader:	the	process	with	the	smallest	counter	in	punish	set

• Diffusion	of	information	over	the	network	by	p:
– p’s	current	round	counter
– set	of	processes	punished	by	p
– current	knowledge		of	p about	the	membership	of	the	system
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Additional	properties	
• Stable	Termination	Property	(SatP):	

– Each	QUERYmust	be	received	by	at	least	one	stable	and	known	
node
Necessary	for	the	diffusion	of	the	information

• Stabilized	Responsiveness	Property	(SRP):
– There	exists	a	time	t after	which	all	nodes	of	p 's	neighborhood	

receive,	to	every	of	their	queries,	a	response	from	pwhich	is	
always	among	the	first	responses

SRP should	hold	for	at	least	one	stable known	node	
(the	eventual	leader)
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Leader	Election:	Sending	of	Query		

36

punishment

*		- pj is	a	neighbor	of	pi,
- pj does	not	answer	to	pi,
- pj is	not	suspected	to	have	moved

*
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Reception	of	Query	and	Response;
Invocation	of	the	Leader
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*

*

*update of pi’s state about punishment, membership, and pi’s neighborhood with more recent 
information :  keeps the tuples with the greatest counter.  
*process with the smallest counter

*
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Exemple:	Mobility	of	nodes

1

2

3

<1,1>,<1,2>,<1,3>,<1,4>

<0,1>,<0,2>,<0,3>,<0,4>	

<1,2>,<1,3>,<1,4>

4

local_known1

punished1

global_known1

<2,4>

<0,1>,<0,2>,<0,3>,<1,4><0,1>,<0,2>,<0,3>,<2,4>

x:<x,4>	in	local_known1 <		y:<y,4>	in	global_known1

<0,1>,<0,2>,<0,3>,<3,4>

1	stops	punishing	4

5

<1,2>,<1,3>,<2,4>
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Open	issues	:	models

• Minimal	condition	in	terms	of	time	/	
connectivity	/	dynamicity	to	solve	agreement	
problems

• Unified	realistic	model	for	distributed	systems
– Dynamicity,	heterogeneity	of	nodes

• Adversary	models	(omission,	byzantine	
failures)
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Open	issues:	distributed	algorithms

• Non	deterministic	algorithms

• Probabilistic	algorithms	/		Indulgent	
algorithms

• Ensure	safety	properties	(eg.	agreement)	
• Relax	liveness properties	(termination)
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Open	issues:	experiments

• Need	of	testbeds to	validate	algorithms	(Silecs
initiative)

• Realistic	mobility	patterns	

• Reproducible	experiments
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Concluding	remarks
Distributed	systems	are	dynamic	

Failure	detection	a	key	component	to	build	reliable	
application	

Unreliable	FDs	
– A	clear	extension	of	asynchronous	model
– A	tool	to	build	services	in	asynchronous	network
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